Skip to main content

NASA’s First Planetary Defense Mission Propelled by Aerojet Rocketdyne

REDMOND, Wash., Nov. 24, 2021 (GLOBE NEWSWIRE) — NASA’s first planetary defense mission—the Double Asteroid Redirection Test (DART)—launched from Vandenberg Space Force Base, California, on Nov. 23, equipped with a full suite of Aerojet Rocketdyne propulsion. The mission is designed to assess if kinetic impact is a reliable method to deflect asteroids. The DART spacecraft will be flown head-on into an asteroid to change its orbit.

DART’s target is a small secondary body (or “moonlet”) orbiting near-Earth asteroid Didymos that is located approximately 6.8 million miles from Earth. If the impact is successful, the spacecraft is expected to change the orbital period of the moonlet around Didymos by several minutes, demonstrating the mission’s objective and potentially helping to protect Earth from future potential asteroid threats.

“Aerojet Rocketdyne’s role on this mission is two-fold: enabling the DART spacecraft to successfully navigate and impact its target with our chemical propulsion system, and demonstrating an innovative, new electric propulsion technology that could support future deep space, national security space and commercial missions,” said Aerojet Rocketdyne CEO and President Eileen P. Drake.

The roughly 10-month cruise to Didymos will include several course corrections using Aerojet Rocketdyne’s chemical and electric propulsion systems to precisely align the spacecraft with the asteroid. The chemical propulsion system, comprised of 12 MR-103G hydrazine thrusters, is the primary source of propulsion on the spacecraft. Each thruster provides 0.2 pounds of thrust (lbf) to enable trajectory correction maneuvers throughout the cruise phase of the mission.

The spacecraft also features NASA’s Evolutionary Xenon Thruster-Commercial (NEXT-C) technology, which will execute propulsive impulses at various stages during the cruise. NEXT-C operates at up to 7kW of power and greater than 4100s specific impulse (Isp). This mission will affirm the capability of Aerojet Rocketdyne’s ion electric propulsion system for future missions, including deep space sample return missions or communication satellites operating in geosynchronous orbit.

NEXT-C was designed and built by Aerojet Rocketdyne in collaboration with NASA’s Glenn Research Center. The chemical propulsion system and electric propulsion xenon feed system were manufactured at Aerojet Rocketdyne’s Redmond, Washington, facility. The DART mission is funded by NASA’s Planetary Defense Coordination Office and led by Johns Hopkins University Applied Physics Laboratory (APL) with support from other industry partners.

About Aerojet Rocketdyne: Aerojet Rocketdyne, a subsidiary of Aerojet Rocketdyne Holdings, Inc. (NYSE:AJRD), is a world-recognized aerospace and defense leader that provides propulsion systems and energetics to the space, missile defense and strategic systems, and tactical systems areas, in support of domestic and international customers. For more information, visit www.Rocket.com and www.AerojetRocketdyne.com. Follow Aerojet Rocketdyne and CEO Eileen Drake on Twitter at @AerojetRdyne and @DrakeEileen.

Media Contacts:
Ashley Riser, Aerojet Rocketdyne, 571-236-4091
ashley.riser@rocket.com
Mary Engola, Aerojet Rocketdyne, 571-289-1371
mary.engola@rocket.com

Disclaimer & Cookie Notice

Welcome to GOLDEA services for Professionals

Before you continue, please confirm the following:

Professional advisers only

I am a professional adviser and would like to visit the GOLDEA CAPITAL for Professionals website.

Cookie Notice

We use cookies to improve your experience on our website

Information we collect about your use of Goldea Capital website

Goldea Capital website collects personal data about visitors to its website.

When someone visits our websites, we use a third party service, Google Analytics, to collect standard internet log information (such as IP address and type of browser they’re using) and details of visitor behavior patterns. We do this to allow us to keep track of the number of visitors to the various parts of the sites and understand how our website is used. We do not make any attempt to find out the identities or nature of those visiting our websites. We won’t share your information with any other organizations for marketing, market research or commercial purposes and we don’t pass on your details to other websites.

Use of cookies
Cookies are small text files that are placed on your computer or other device by websites that you visit. They are widely used to make websites work, or work more efficiently, as well as to provide information to the owners of the site.